Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 367: 1-12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244844

RESUMO

Immunogenic cell death (ICD) is associated with the release of damage-associated molecular patterns, including ATP, to promote an effective immune cycle against tumors. However, tumors have evolved an effective strategy for degrading extracellular immunostimulatory ATP via the ATP-adenosine axis, allowing the sequential action of the ectonucleotidases CD39 to degrade accumulated immunostimulatory ATP into pleiotropic immunosuppressive adenosine. Here, an ingenious dissolving microneedle patch (DMNs) is designed for the intralesional delivery of CD39 inhibitor (sodium polyoxotungstate, POM-1) and ICD inducer (IR780) co-encapsulated solid lipid nanoparticles (P/I SLNs) for antitumor therapy. Upon insertion into the tumor site, IR780 induces ICD modalities with the release of damage-associated molecular patterns from endogenous tissues, which activates the antitumor immune cycle. Simultaneously, POM-1 promotes the liberation of immunostimulatory ATP and lowers the level of immunosuppressive extracellular adenosine, which supported immune control of tumors via recruiting CD39-expressing immune cells. In vivo antitumor studies prove that this platform can effectively eliminate mice melanoma (tumor growth inhibitory rate of 96.5%) and colorectal adenocarcinoma (tumor growth inhibitory rate of 93.5%). Our results shed light on the immunological aspects of combinatorial phototherapy and ATP-adenosine regulation, which will broaden the scope of synergistic antitumor immunotherapy.


Assuntos
Adenosina , Neoplasias , Animais , Camundongos , Fototerapia/métodos , Neoplasias/terapia , Trifosfato de Adenosina/metabolismo , Imunoterapia , Linhagem Celular Tumoral
2.
Pharmaceutics ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37765174

RESUMO

Superparamagnetic iron oxide (SPIO) nanocrystals have been extensively studied as theranostic nanoparticles to increase transverse (T2) relaxivity and enhance contrast in magnetic resonance imaging (MRI). To improve the blood circulation time and enhance the diagnostic sensitivity of MRI contrast agents, we developed an amphiphilic copolymer, PCPZL, to effectively encapsulate SPIO nanocrystals. PCPZL was synthesized by crosslinking a polyethylene glycol (PEG)-based homobifunctional linker with a hydrophobic star-like poly(ε-benzyloxycarbonyl-L-lysine) segment. Consequently, it could self-assemble into shell-crosslinked micelles with enhanced colloidal stability in bloodstream circulation. Notably, PCPZL could effectively load SPIO nanocrystals with a high loading capacity of 66.0 ± 0.9%, forming SPIO nanoclusters with a diameter of approximately 100 nm, a high cluster density, and an impressive T2 relaxivity value 5.5 times higher than that of Resovist®. In vivo MRI measurements highlighted the rapid accumulation and contrast effects of SPIO-loaded PCPZL micelles in the livers of both healthy mice and nude mice with an orthotopic hepatocellular carcinoma tumor model. Moreover, the magnetic micelles remarkably enhanced the relative MRI signal difference between the tumor and normal liver tissues. Overall, our findings demonstrate that PCPZL significantly improves the stability and magnetic properties of SPIO nanocrystals, making SPIO-loaded PCPZL micelles promising MRI contrast agents for diagnosing liver diseases and cancers.

3.
J Control Release ; 357: 641-654, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084892

RESUMO

Despite vaccination having the potency to revolutionize disease treatments, some critical issues including lack of safe and effective delivery system, insufficient internalization and ineffective antigen cross-presentation by dendritic cells (DCs) severely hamper its extensive clinical applications. Herein, we developed a whole cell-encapsulated antitumor vaccine microneedle patch (TCV-DMNs) potentiated with transdermal co-delivery of granulocyte-macrophage colony-stimulating factor (GM-CSF) and autophagy promoter (Tat-beclin 1). After transdermal vaccination with TCV-DMNs, GM-CSF released from DMNs serves as a potent adjuvant to recruit and promote the phagocytosis of antigens by DCs. Subsequently, Tat-beclin 1 promoted DCs maturation and MHC-I-mediated cross-presentation via up-regulated autophagy of DCs. We found that vaccination with TCV-DMNs could not only effectively suppress melanoma challenge, but also lead to regression of established malignancies, followed by a relapse-free survival of >40 days. Collectively, whole cell-encapsulated microneedle-assisted transdermal vaccination TCV-DMNs in combination with autophagy regulation could induce a robust antitumor immune response via enhancing transdermal delivery efficiency, promoting antigen internalization and cross-presentation, together with boosting T cell activities.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Dendríticas , Proteína Beclina-1 , Vacinação , Imunoterapia , Neoplasias/tratamento farmacológico , Antígenos , Autofagia
4.
J Colloid Interface Sci ; 628(Pt B): 189-203, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994900

RESUMO

HYPOTHESIS: Chemodynamic therapy (CDT) can efficiently kill cancer cells by producing hydroxyl radical (•OH), a kind of high-toxic reactive oxygen species (ROS), via Fenton or Fenton-like reactions. This study involved a versatile nanomedicine, MSN@DOX/GA-Fe/PDA (M@DGP), delivered via microneedles, which was expected to combine chemodynamic/photothermal/chemotherapy and efficiently increase ROS accumulation to achieve significant therapeutic efficacy against melanoma. EXPERIMENTS: The composition of the synthesized nanoparticles was confirmed by a series of characterizations including transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential. The photothermal properties of the nanomedicine was evaluated via infrared imaging, and •OH-producing ability was evaluated by UV-Vis and electron spin resonance. The mechanisms of ROS accumulation were studied in B16 cells by detecting intracellular •OH, glutathione, and ROS levels. The drug-loaded microneedles (M@DGP-MNs) were prepared, and their morphology and mechanical strength were characterized. The in vivo antimelanoma effect and biosafety evaluation of the nanomedicine were investigated in tumor-bearing C57 mice. FINDINGS: M@DGP was successfully prepared and could achieve ROS accumulation through a photothermal-enhanced Fenton reaction, polydopamine-induced glutathione consumption, and doxorubicin-mediated mitochondrial dysfunction which induced oxidative stress and apoptosis of tumor cells. M@DGP-MNs showed superior antitumor efficacy and good biosafety, providing a promising strategy for melanoma treatment.


Assuntos
Melanoma , Nanopartículas , Neoplasias , Animais , Camundongos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/química , Glutationa , Radical Hidroxila , Nanomedicina , Nanopartículas/química , Neoplasias/patologia , Espécies Reativas de Oxigênio
5.
Acta Pharm Sin B ; 12(4): 2074-2088, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847508

RESUMO

The therapeutic efficacy of cisplatin has been restricted by drug resistance of cancers. Intracellular glutathione (GSH) detoxification of cisplatin under the catalysis of glutathione S-transferases (GST) plays important roles in the development of cisplatin resistance. Herein, a strategy of "pincer movement" based on simultaneous GSH depletion and GST inhibition is proposed to enhance cisplatin-based chemotherapy. Specifically, a redox-responsive nanomedicine based on disulfide-bridged degradable organosilica hybrid nanoparticles is developed and loaded with cisplatin and ethacrynic acid (EA), a GST inhibitor. Responding to high level of intracellular GSH, the hybrid nanoparticles can be gradually degraded due to the break of disulfide bonds, which further promotes drug release. Meanwhile, the disulfide-mediated GSH depletion and EA-induced GST inhibition cooperatively prevent cellular detoxification of cisplatin and reverse drug resistance. Moreover, the nanomedicine is integrated into microneedles for intralesional drug delivery against cisplatin-resistant melanoma. The in vivo results show that the nanomedicine-loaded microneedles can achieve significant GSH depletion, GST inhibition, and consequent tumor growth suppression. Overall, this research provides a promising strategy for the construction of new-type nanomedicines to overcome cisplatin resistance, which extends the biomedical application of organosilica hybrid nanomaterials and enables more efficient chemotherapy against drug-resistant cancers.

6.
Mater Sci Eng C Mater Biol Appl ; 131: 112494, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857280

RESUMO

Cellular defense system represented by glutathione (GSH) greatly weakens the outcomes of cancer therapy by antioxidation and detoxification. GSH depletion has been proved to be an effective way to enhance the efficacy of reactive oxygen species (ROS)-based therapies and chemotherapy. However, the existing strategies of GSH depletion still face the problems of unclear biosafety and high complexity of multicomponent co-delivery. In this study, we developed a GSH-depleting carrier platform based on disulfide-bridged mesoporous organosilica nanoparticles (MONs) to destroy the cellular defense system for cancer therapy. Responding to the high level of GSH in cancer cells, the disulfide bonds in the framework of MONs could be broken and consumed substantial GSH at the same time. Moreover, this process also promoted the degradation of MONs. In order to evaluate the effect of this platform in cancer therapy, chemotherapeutic drug cisplatin was loaded into MONs (Pt@MONs) to treat drug-resistant non-small cell lung cancer. In vitro and in vivo results indicated that Pt@MONs efficiently triggered GSH depletion, promoted platinum-DNA adduct formation, and induced cell apoptosis, resulting in significant tumor growth inhibition without marked toxicity. Taken together, the cellular defense system-destroying nanoparticles provide a promising platform for enhanced cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Doxorrubicina , Portadores de Fármacos , Glutationa , Humanos
7.
Biomater Sci ; 9(23): 8051, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34724698

RESUMO

Correction for 'Microneedle-mediated delivery of MIL-100(Fe) as a tumor microenvironment-responsive biodegradable nanoplatform for O2-evolving chemophototherapy' by Sulan Luo et al., Biomater. Sci., 2021, DOI: 10.1039/d1bm00888a.

8.
J Control Release ; 339: 335-349, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34606937

RESUMO

Starvation therapy based on glucose oxidase (GOx) has attracted considerable attention in tumor treatment. However, several shortcomings severely hinder its further applications, including limited therapeutic efficacy, poor enzyme stability, and potential side effects. Herein, a strategy of cascade reaction-enhanced combined therapy based on the oxygen-evolving multifunctional nanoreactors is proposed for tumor therapy. The GOx and catalase (CAT) are immobilized in metal-organic frameworks by biomimetic mineralization to improve their stability via spatial confinement. The GOx can consume glucose, reduce ATP levels, and down-regulate the expression of heat shock proteins, which consequently sensitize tumor cells to indocyanine green-based photothermal therapy. Furthermore, the hydrogen peroxide generated by GOx as well as overexpressed in tumor can be decomposed by CAT and continuously generate oxygen, which further enhance the efficacy of oxygen-dependent starvation therapy and photodynamic therapy. The nanoreactors are directly delivered to the superficial tumor by microneedles, achieving efficient tumor accumulation and dramatically strengthened antitumor efficacy without obvious side effects, which provides a valuable paradigm for the application of cascade reaction-based combined therapy.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Glucose Oxidase , Humanos , Peróxido de Hidrogênio , Nanotecnologia , Neoplasias/tratamento farmacológico
9.
Biomater Sci ; 9(20): 6772-6786, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636812

RESUMO

The low oxygen level in tumors significantly reduces the antitumor efficacy of photodynamic therapy (PDT). The provision of O2 and monomeric hydrophobic photosensitizers (PSs) under physiological conditions would greatly help to shrink malignant tumors. We take advantage of the high porosity and multifunctionality of metal-organic frameworks (MOFs) to fabricate a simple all-in-one nanoplatform mediated by microneedle delivery to achieve synergistic O2 evolution and chemophototherapy. An iron(III)-based MOF (MIL-100(Fe)) acted not only as a vehicle for the concurrent delivery of zinc phthalocyanine (ZnPc) and doxorubicin hydrochloride (Dox), but also to supply O2 by decomposing hydrogen peroxide (H2O2) in the tumor microenvironment via a Fenton-like reaction. In vitro and in vivo experiments indicated that the nanoplatform had excellent biocompatibility and exerted enhanced anticancer effects. The encapsulated drug was sustainably released from the nanoplatform skeleton in response to acidic tumor microenvironments. Moreover, upon 660 nm light irradiation, ZnPc effectively produced reactive oxygen species (ROS) due to the reduction of hypoxia by MIL-100(Fe). A microneedle technique was adopted to directly deliver the nanoplatform into superficial tumors rather than via systemic circulation. Hence, this study provides a new strategy for more efficient chemophototherapy of hypoxic superficial tumors.


Assuntos
Peróxido de Hidrogênio , Microambiente Tumoral , Compostos Férricos , Oxigênio
10.
Biomaterials ; 277: 121110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482088

RESUMO

Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Fotoquimioterapia , Antineoplásicos/uso terapêutico , Glutationa , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio
11.
Acta Pharm Sin B ; 11(8): 2326-2343, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34522590

RESUMO

Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.

12.
Acta Biomater ; 135: 164-178, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530140

RESUMO

Cutaneous melanoma is one of the most common malignant skin cancer with high lethality. Chemotherapy and photothermal therapy are important and extensively studied treatment modalities for melanoma. However, these therapies still face some challenges, which severely restrict their further applications, such as unsatisfactory efficacy of monotherapy, nonspecific uptake and release during drug delivery, and unexpected adverse effects from system administration. Recently, the strategies of collaboration, functional modification, stimuli-responsive design, and topical administration all show great prospect for solving above problems. In this research, a multifunctional nanoparticle-integrated dissolving microneedle drug delivery system was constructed, in which the nanoparticles were prepared based on the framework with the incorporation of photothermal agent (CuS) into Zeolitic imidazolate framework-8 and functionalized by hyaluronic acid. This system can co-load multi-modal drugs, improve specific uptake and distribution of targeted tumor, deliver drug locally, and release drug intelligently and spatiotemporally, thereby promising a low-dose administration with high efficiency. The high inhibiting tumor performance and excellent systematic safety were verified both in vitro and in vivo. Together, this smart design overcame the drawbacks of monotherapy and conventional system administration. We believe the nanoparticle-integrated dissolving microneedles will be in prospect of clinical application for more superficial tumors with further delicate optimization. STATEMENT OF SIGNIFICANCE: Melanoma is one of the most common skin cancers with high lethality. Extensively studied chemotherapy and photothermal therapy still face some challenges, such as the limited therapeutic efficacy and the severe system adverse effects. In order to overcome these drawbacks, the multifunctional nanoparticle-integrated dissolving microneedles (DMNs) were designed. Especially, the nanoparticles could co-load multi-modal drugs, improve specific uptake, and release drug intelligently and spatiotemporally. The microneedles could increase the drug accumulation in tumor, thus achieving excellent therapeutic efficacy and reducing side effects. This system paved the way to a less invasive, more focused and efficient therapeutic strategy for melanoma therapy.


Assuntos
Melanoma , Nanopartículas Multifuncionais , Nanopartículas , Neoplasias Cutâneas , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Melanoma/tratamento farmacológico , Fototerapia , Terapia Fototérmica , Neoplasias Cutâneas/tratamento farmacológico
13.
Acta Pharm Sin B ; 11(9): 2609-2644, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589385

RESUMO

Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.

14.
Int J Pharm ; 607: 120974, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34358540

RESUMO

Non-cystic fibrosis bronchiectasis (NCFB) is a chronic respiratory disease, and the thick and viscous mucus covering on respiratory epithelia can entrap the inhaled drugs, resulting in compromised therapeutic efficiency. In order to solve this problem, the inhalable ciprofloxacin hydrochloride microparticles (CMs) based on silk fibroin (SF) and mannitol (MAN) were designed and developed. SF was applied to increase the loading efficiency of ciprofloxacin hydrochloride by strong electrostatic interactions. MAN could facilitate the penetration of drugs through mucus, which ensured the drugs could reach their targets before clearance. Furthermore, the aerodynamic performance of the inhalable microparticles could be tuned by changing the surface roughness to achieve a high fine particle fraction value (45.04%). The antibacterial effects of CMs were also confirmed by measuring the minimum inhibitory concentration against four different bacteria strains. Moreover, a series of experiments both in vitro and in vivo showed that CMs would not affect the lung function and induce the secretion of inflammatory cytokines in lungs, demonstrating their excellent biocompatibility and biosafety. Therefore, CMs might be a promising pulmonary drug delivery system for the treatment of NCFB.


Assuntos
Bronquiectasia , Fibroínas , Administração por Inalação , Antibacterianos/uso terapêutico , Bronquiectasia/tratamento farmacológico , Ciprofloxacina/uso terapêutico , Inaladores de Pó Seco , Humanos
15.
AAPS PharmSciTech ; 22(4): 142, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893566

RESUMO

Apremilast (APST) is an effective inhibitor of phosphodieasterase 4 (PDE4) which is the first oral drug for the treatment of adult patients with active psoriatic arthritis. However, Apremilast's low solubility restricts its dissolution and bioavailability. In this study, APST solid dispersion with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and Poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA) was developed to improve the dissolution and bioavailability of APST by spray drying. A series of TPGS were synthesized to elucidate the effect of the ratio of monoester to diester on solubilizing capacity. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier transform infrared spectrophotometry (FT-IR) were used to characterize the solid dispersion, and the results showed that APST was amorphous in solid dispersion. In vitro dissolution study showed that the dissolution rate of solid dispersion in phosphate buffered saline (pH 6.8) was remarkably increased, reaching a release of 90% within 10 min. Moreover, in vivo pharmacokinetics study revealed that the bioavailability of solid dispersion in rats had significant improvement. In particular, its Cmax and AUClast were nearly 22- and 12.9-fold greater as compared to APST form B, respectively. In conclusion, APST solid dispersion with TPGS and PVPVA is an alternative drug delivery system to improve the solubility and oral bioavailability of APST.


Assuntos
Formas de Dosagem , Inibidores da Fosfodiesterase 4/química , Povidona/análogos & derivados , Talidomida/análogos & derivados , Vitamina E/química , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Inibidores da Fosfodiesterase 4/farmacocinética , Povidona/química , Difração de Pó , Ratos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Talidomida/química , Talidomida/farmacocinética
16.
ACS Nano ; 15(2): 3387-3401, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33576607

RESUMO

Although certain therapeutic agents with immunogenic properties may enhance antitumor immunity, cancer cells can eliminate harmful cytoplasmic entities and escape immunosurveillance by orchestrating autophagy. Here, an ingenious in situ self-assembled nanomicelle dissolving microneedle (DMN) patch was designed for intralesional delivery of immunogenic cell death-inducer (IR780) and autophagy inhibitor (chloroquine, CQ) coencapsulated micelles (C/I-Mil) for efficient antitumor therapy. Upon insertion into skin, the self-assembled C/I-Mil was generated, followed by electrostatic binding of hyaluronic acid, the matrix material of DMNs, accompanied by the dissolution of DMNs. Subsequently, photothermal-mediated size-tunable C/I-Mil could effectively penetrate into deep tumor tissue and be massively internalized via CD44 receptor-mediated endocytosis, precisely ablate tumors with the help of autophagy inhibition, and promote the release of damage-associated molecular patterns. Moreover, CQ could also act as an immune modulator to remodel tumor-associated macrophages toward the M1 phenotype via activating NF-κB. In vivo results showed that the localized photoimmunotherapy in synergy with autophagy inhibition could effectively eliminate primary and distant tumors, followed by a relapse-free survival of more than 40 days via remodeling the tumor immunosuppressive microenvironment. Our work provides a versatile, generalizable framework for employing self-assembled DMN-mediated autophagy inhibition integrated with photoimmunotherapy to sensitize superficial tumors and initiate optimal antitumor immunity.


Assuntos
Imunoterapia , Fototerapia , Autofagia , Micelas , Agulhas
17.
Small ; 17(8): e2005064, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33511778

RESUMO

For decades, nanoscale metal-organic frameworks (nMOFs) have attracted extensive interest in biomedicine due to their distinct characteristics, including facile synthesis, porous interior, and tunable biocompatibility. With high porosity, versatile nMOFs allow for the facile encapsulation of various therapeutic agents with exceptionally high payloads. Constructed from metal ions and organic linkers through coordination bonds, nMOFs with plentiful functional groups enable the surface modification for active targeting and enhanced biocompatibility. This review outlines the up-to-date progresses on the exploration of nMOFs in the field of biomedicine. First, the classification and synthesis of nMOFs are discussed, followed by the concrete introduction of drug loading strategies of nMOFs and mechanisms of stimulation-responsive drug release. Second, the smart designs of the nMOFs-based platforms for anticancer and antibacterial treatment are summarized. Finally, the basic challenges faced by nMOFs research and the great potential of biomimetic nMOFs are presented. This review article affords an inspiring insight into the interdisciplinary research of nMOFs and their biomedical applications, which holds great expectation for their further clinical translation.


Assuntos
Estruturas Metalorgânicas , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Metais , Porosidade
18.
Curr Pharm Biotechnol ; 22(1): 182-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32484768

RESUMO

BACKGROUND: The administration of many pharmaceutical active ingredients is often performed by the injection of an aqueous-based solution. Numerous active ingredients are however, insoluble in water, which complicates their administration and restricts their efficacy. OBJECTIVE: The current solutions are hindered by both, a time-consuming manufacturing process and unsuitability for hydrophilic and hydrophobic materials. METHODS: Emulsions of oleophilic active ingredients and polyprotein microspheres are an important step to overcome insolubility issues. RESULTS: Polyprotein microspheres offer a versatile modifiable morphology, thermal responsivity, and size variation, which allows for the protection and release of assembled biomaterials. In addition, nanospheres present promising cell phagocytosis outcomes in vivo. CONCLUSION: In this research, a reproducible multifunctional approach, to assemble nanospheres in one step, using a technique termed "automatic nanoscalar interfacial alternation in emulsion" (ANIAE) was developed, incorporating a thermally controlled release mechanism for the assembled target active ingredients. These results demonstrate a viable, universal, multifunctional principal for the pharmaceutical industry.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Lidocaína/administração & dosagem , Nanosferas/química , Polipropilenos/química , beta Caroteno/administração & dosagem , Composição de Medicamentos , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Lidocaína/química , Microesferas , Tamanho da Partícula , Poliproteínas/química , Solubilidade , Propriedades de Superfície , beta Caroteno/química
19.
Acta Biomater ; 121: 119-133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285323

RESUMO

Transdermal drug delivery is an attractive route for dermatological disease therapy because it can directly target the lesion site on the skin, reduce adverse reactions associated with systemic administration, and improve patient compliance. However, the stratum corneum, as the main skin barrier, severely limits transdermal drug penetration, with compromised bioavailability. Microneedles (MNs), which are leveraged to markedly improve the penetration of therapeutic agents by piercing the stratum corneum and creating hundreds of reversible microchannels in a minimally invasive manner, have been envisioned as a milestone for effective transdermal drug delivery, especially for superficial disease therapy. Here, the emergence of versatile MNs for the transdermal delivery of various drugs is reviewed, particularly focusing on the application of MNs for the treatment of diverse skin diseases, including superficial tumors, scars, psoriasis, herpes, acne, and alopecia. Additionally, the promises and challenges of the widespread translation of MN-mediated transdermal drug delivery in the dermatology field are summarized.


Assuntos
Preparações Farmacêuticas , Dermatopatias , Administração Cutânea , Sistemas de Liberação de Medicamentos , Humanos , Microinjeções , Agulhas , Pele , Dermatopatias/tratamento farmacológico
20.
Acta Pharm Sin B ; 10(11): 2198-2211, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33304786

RESUMO

Malignant tumor has become an urgent threat to global public healthcare. Because of the heterogeneity of tumor, single therapy presents great limitations while synergistic therapy is arousing much attention, which shows desperate need of intelligent carrier for co-delivery. A core‒shell dual metal-organic frameworks (MOFs) system was delicately designed in this study, which not only possessed the unique properties of both materials, but also provided two individual specific functional zones for co-drug delivery. Photosensitizer indocyanine green (ICG) and chemotherapeutic agent doxorubicin (DOX) were stepwisely encapsulated into the nanopores of MIL-88 core and ZIF-8 shell to construct a synergistic photothermal/photodynamic/chemotherapy nanoplatform. Except for efficient drug delivery, the MIL-88 could be functioned as a nanomotor to convert the excessive hydrogen peroxide at tumor microenvironment into adequate oxygen for photodynamic therapy. The DOX release from MIL-88-ICG@ZIF-8-DOX nanoparticles was triggered at tumor acidic microenvironment and further accelerated by near-infrared (NIR) light irradiation. The in vivo antitumor study showed superior synergistic antitumor effect by concentrating the nanoparticles into dissolving microneedles as compared to intravenous and intratumoral injection of nanoparticles, with a significantly higher inhibition rate. It is anticipated that the multi-model synergistic system based on dual-MOFs was promising for further biomedical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA